ОКП 43 7241 Группа Г 88

ПРИБОР АДРЕСНО-АНАЛОГОВЫЙ ПРИЕМНО - КОНТРОЛЬНЫЙ ОХРАННО – ПОЖАРНЫЙ И УПРАВЛЕНИЯ ВЗРЫВОЗАЩИЩЕННЫЙ

ППКОПУ 03041-1-2 "Минитроник А32.Ех"

С ВЫНОСНЫМ ПУЛЬТОМ УПРАВЛЕНИЯ "Минитроник ВПУ"

Техническое описание ЮНИТ.437241.400.Ex ТО

СОДЕРЖАНИЕ

1.	НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ	4
2.	КОМПЛЕКТ ПОСТАВКИ	6
3.	УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ	7
	3.1. Меры безопасности при подготовке прибора к работе	7
	3.2. Меры безопасности при эксплуатации прибора	7
4.	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ АПКП	7
	4.1. Общие характеристики	7
	4.2. Характеристики назначения	
	4.3. Эксплуатационные характеристики	9
5.	УСТРОЙСТВО И РАБОТА АПКП И ВПУ	9
	5.1. Устройство АПКП и ВПУ	9
	5.2. Состав адресных устройств	11
	5.3. Основные принципы работы АПКП	15
	5.4. Алгоритмы работы пожарных извещателей согласно СП484.1311500.2020	15
6.	РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ	17
	6.1. Определение основных параметров системы	17
	6.2. Архитектура адресной линии	25
	6.3. Шлейфы сигнализации АУ	27
7.	ПОРЯДОК МОНТАЖА И ПРОГРАММИРОВАНИЯ	27
	7.1. Установка АПКП	27
	7.2. Первый способ программирования АУ	28
	7.3. Второй способ программирования АУ	29
	7.4. Проверка правильности программирования АУ	30
	7.5. Применение монтажных устройств и аксессуаров	30
8.	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	30
	8.1. Общие положения	30
	8.2. Замена АУ	30
	8.3. Замана АПКП	31

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Приборы адресно-аналоговые приемно-контрольные пожарные, охранные, охранно-пожарные, управления и пожаротушения ППКОПУ 03041-1-2 "Минитроник А32.Ех" (далее АПКП) с выносными пультами управления «Минитроник ВПУ» (далее ВПУ) работают совместно с адресными устройствами (далее АУ) и предназначены для централизованной и автономной охраны от несанкционированных проникновений и пожаров помещений взрывоопасных зон в составе зданий и сооружений – таких, на которых ранее применялись шлейфовые приборы, рассчитанные на 2÷32 шлейфа сигнализации.

АПКП обеспечивает:

- прием информации о проникновении, пожаре или неисправностях от адресных устройств (далее АУ): адресно-аналоговых пожарных извещателей (АПИ), адресных модулей и меток, к которым могут быть подключены охранные извещатели (ОИ), пожарные извещатели (ПИ), датчики инженерных систем извещатели состояния (ИС);
- прием информации о неисправностях приемно-контрольного прибора, адресной адресной линии и шлейфов сигнализации, подключенных к адресным меткам и модулям;
- оповещение дежурного персонала о возникших событиях путем выдачи текстовых, световых и звуковых сообщений на встроенный жидкокристаллический дисплей (4 строки по 21 символу), а также на выносные устройства оповещения (три «открытых коллектора» 12В) и пульт центрального наблюдения (ПЦН) с помощью трех реле;
- управление устройствами систем оповещения, дымоудаления и пожаротушения (УП);
- постановку и снятие с охраны с помощью электронных ключей Touch Memory или карт Proximity;
- управление доступом в помещение с регистрацией времени прохода в энергонезависимой памяти;
- регистрацию и хранение событий в энергонезависимой памяти (журнале событий).
- 1.2. Взрывозащищенный АПКП относится к связанному электрооборудованию по ГОСТ 31610.11-2012/IEC 60079-11:2006, имеет маркировку взрывозащиты [Ex ia] IIC X, соответствует требованиям ГОСТ 31610.0-2012 (IEC 60079-0:2004), ГОСТ 31610.11-2012/IEC 60079-11:2006 и предназначен для установки вне взрывоопасных зон.

Взрывозащищенные адресные устройства, перечисленные в пп.1-13 таблицы 2 предназначены для применения во взрывоопасных зонах в соответствии с установленной маркировкой взрывозащиты, требованиями ГОСТ Р 52350.11, ГОСТ Р 52350.14-2006 (МЭК 60079-14:2002), главы 7.3 ПУЭ и других документов, регламентирующих применение электрооборудования во взрывоопасных зонах.

- 1.3. АПКП содержит в своем составе программатор адресов АУ и конфигуратор базы данных АУ. Кроме того, в АПКП предусмотрен порт USB для подключения компьютера, который служит для сохранения и конфигурации базы данных АУ и электронных ключей (карт), введения названий шлейфов сигнализации, считывания журнала событий и оформления отчета о запыленности извещателей.
- 1.4. АПКП оснащен съемной платой памяти для хранения резервной копии базы данных АУ. Плата обеспечивает автоматическое восстановление базы данных в случае ее повреждения и повышает живучесть системы, позволяет легко переносить базу данных в другие АПКП, что значительно упрощает обслуживание и замену прибора при ремонте.
- 1.5. В АПКП предусмотрен выход RS-485 для подключения выносных пультов управления со светодиодной индикацией СДИ-1 или с ЖКИ-дисплеем «Минитроник ВПУ» со всеми функциями управления системой. К выходу RS-485 также могут быть подключены коммуникатор радиоканального мониторинга различных систем, таких как:
 - система LONTA 202, коммуникатор RS-202TD.
 - система РСПИ «Дельта», коммуникатор «Дельта-ПАМ» исп.2

или аналогичный.

- 1.6. Доступ к пульту управления АПКП и ВПУ может (по желанию) ограничиваться электронными ключами типа Touch Memory (ключи «дежурного»). «Объектовые» ключи (карты) позволяют производить дистанционную постановку/снятие с охраны с помощью контроллеров А16-КТМ, а ключи (карты) «сотрудника» также и со считывателя АПКП или ВПУ.
- 1.7. Режим работы охранной сигнализации с задержкой на вход-выход расширяет возможности АПКП. Служит для передачи сигналов на пульт централизованной охраны.
- 1.8. Питание АПКП обеспечивается от сети переменного тока 220В, 50Гц. АПКП оборудованы резервным источником питания с аккумуляторной батареей (АКБ) 12В, 7А-ч. АПКП контролирует наличие АКБ, а также имеет защиту АКБ от перезаряда и от полного разряда, что продлевает срок службы АКБ.
 - 1.9. Питание ВПУ осуществляется от внешнего источника питания =12В.
- 1.10. Внешний вид АПКП показан на рис.1. ВПУ в точности повторяет лицевую панель АПКП.

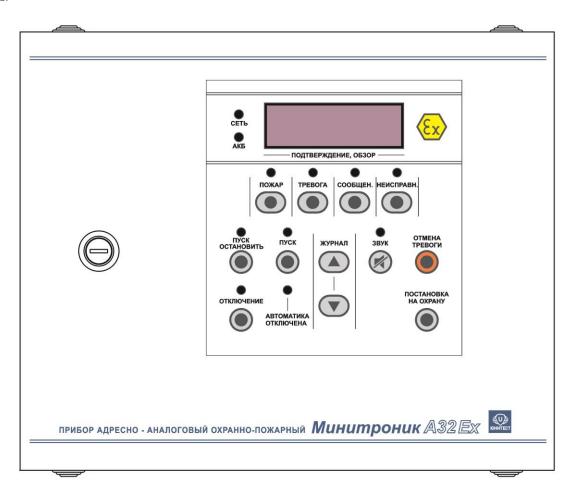


Рис.1. Внешний вид АПКП «Минитроник А32.Ex».

1.11. Обмен информацией между АПКП и АУ осуществляется по двум двухпроводным адресным линиям. Линии подключают по кольцевой или лучевой схеме с возможностью ответвлений. Одна из них, предназначенная для работы вне взрывоопасной зоны, имеет суммарную длину кабеля до 3 км, другая, предназначенная для работы во взрывоопасной зоне — до 2 км.

Искробезопасная адресная линия гальванически развязана от остальных частей АПКП. Параметры искробезопасной цепи указаны в разделе 4 данного руководства.

1.12. Питание всех АУ осуществляется от адресной линии. Внешние устройства, подключенные к реле управляющих модулей, требуют самостоятельного питания, причем наличие

этого питания контролируется управляющими модулями.

Цепи подключения питания исполнительных устройств и цепи реле управляющих модулей (А16-УОП.Ех, А16-УПТ.Ех, А16-МАУ.Ех, А16-ТК.Ех-С) должны быть искробезопасными, с параметрами, соответствующими условиям применения устройств во взрывоопасной зоне, либо иметь исполнение в d-оболочке и подключаться к модулям с помощью соответствующих коммутационных коробок.

- 1.13. Для адресной линии и для связи по RS-485 применяют провод типа «витая пара» марок:
 - -UT 505нг(A)-FRLS FE 180 1х2х0,5mm (сечение 0,2мм²) или 1х2х0,8mm (0,5мм²);
 - UT 505нг(A)-FRHF FE 180 1х2х0,5mm (сечение 0,2мм²) или 1х2х0,8mm (0,5мм²);
 - -UTP-1 cat5e, 1x2x0,5.

1.14. К АУ относятся:

- адресно-аналоговые автоматические дымовые, тепловые и газовые пожарные извещатели (далее ДИП, ИПТ и ИПГ) с системой самотестирования;
- адресные ручные извещатели (далее ИПР);
- метки адресные пожарные, охранные, контрольные (далее МА);
- модули адресные управляющие (далее МАУ);
- модули адресные управляющие табло «Выход» (далее УОП-В);
- модули адресные управления пожаротушением (далее УПТ);
- блок питания резервируемый адресный (далее БПРА)
- контроллеры считывателей Touch Memory и Proximity охранные (далее КТМ).
- 1.15. Газовые (CO) извещатели могут выполнять функцию контроля загазованности CO. Для этого извещатели программируются как установленные в инженерные ШС АПКП.
- 1.16. МА предназначены для подключения пожарных или охранных шлейфов сигнализации, датчиков состояния (включено/выключено, открыто/закрыто, датчики затопления, газа и т.п.), а также для контроля питания и изъятия устройств.
- 1.17. МАУ предназначены для управления устройствами пожаротушения, дымоудаления, оповещения и другими системами противопожарной автоматики, а также для контроля цепей управления.
- 1.18. УОП-В предназначены для управления шлейфом с постоянно включенными табло «Выход», для контроля исправности шлейфа и внутренних цепей табло.
- 1.19. УПТ предназначены для управления одним направлением порошкового, аэрозольного, газового пожаротушения.
- 1.20. КТМ предназначены для дистанционного управления охранной сигнализацией (постановка/снятие) или управлением доступом в помещение (разрешение/ограничение прохода).
- 1.21. Массив АУ в памяти АПКП при программировании условно разбивают на зоны охраны (шлейфы сигнализации, или "ШС"), к которым виртуально принадлежат АУ: пожарные ШС, охранные ШС, контрольные (инженерные) ШС, специальные ШС. При этом физически АУ остаются подключенными к одной адресной линии.

2. КОМПЛЕКТ ПОСТАВКИ

- 2.1. Комплект поставки указан в таблице 1. Описание работы АУ в их руководствах по эксплуатации.
- 2.2. Обозначение АПКП и ВПУ при его заказе и в документации другого изделия, в котором он может быть применен: "Прибор ППКОПУ 03041-1-2 "Минитроник А32.Ех" ТУ 4372-010-66347656-2010", «Выносной пульт управления "Минитроник ВПУ" ТУ4372-010-66347656-2010".

DS 1990A f-5

Ŋo **Условное** Комплектующие Кол-во п.п обозначение ППКОПУ 03041-1-2 "Минитроник А32.Ех" ППКОПУ 03041-1-2 1 1 шт. 2 Резистор 10 кОм $\pm 5\%$, 0,25 Вт 2 шт. 2 Резистор 5.6 кОм $\pm 5\%$, 0,25 Вт 1 шт. Дополнительная плата памяти 1 шт. 3 ПА-1 4 Паспорт 1 экз. ЮНИТ.437241.400 ПС 5 Упаковка 1 шт. Комплект документации на CD 6 1 шт. 7 ЮНИТ.437241.165 ТО Техническое описание По требов. ЮНИТ.437241.165 ИЭ 8 Инструкция по эксплуатации По требов. 9 Руководство по программированию По требов. ЮНИТ.437241.165 РП По требов. «Минитроник ВПУ» ЮНИТ.437241.165 ТО 10 Считыватель Touch Memory По требов. TR-G/R IOT 11

Табл. 1. Комплект поставки

Ключ Touch Memory

12

3. УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

По требов.

- 3.1. Меры безопасности при подготовке прибора к работе
- 3.1.1. Перед началом работы с прибором необходимо ознакомиться с настоящим техническим описанием.
 - 3.1.2. Все подключения производить при отключенном электропитании.
- 3.1.3. Доступ к АПКП должен быть обязательно ограничен т.к. к нему подключаются искробезопасные цепи. Искробезопасная адресная линия на участке вне взрывоопасной зоны должна быть защищена от механических повреждений.
- 3.1.4. Клемма заземления на плате прибора подлежит обязательному заземлению в соответствии с требованиями ПУЭ. Заземление производить неизолированным медным проводом сечением не менее 2 мм^2 .
 - 3.2. Меры безопасности при эксплуатации прибора
- 3.2.1. Меры безопасности при установке, эксплуатации и обслуживании АПКП и ВПУ должны соответствовать требованиям «Правил технической эксплуатации электроустановок потребителей» и «Правил техники безопасности при эксплуатации электроустановок потребителей» для установок с напряжением до 1000В.

ВНИМАНИЕ!

- 1. В блоке питания АПКП присутствует напряжение 220В 50Гц. Все подключения производить при отключенном электропитании.
- 2. Прибор может управлять внешними устройствами с напряжением питания до 220В. При подключении таких устройств необходимо предварительно их обесточить!

4. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ АПКП

4.1. Общие характеристики

- 4.1.1. АПКП и ВПУ соответствуют требованиям ТУ 4372-010-66347656-2010 и комплекта технической документации, введённых в установленном порядке, а также ГОСТ Р 53325-2012, ГОСТ 31610.0-2012 (IEC 60079-0:2004), ГОСТ 31610.11-2012/IEC 60079-11:2006.
 - 4.1.2. АПКП и ВПУ рассчитаны на круглосуточную и непрерывную работу.
- 4.1.3. По устойчивости к воздействию коррозионно-активных агентов АПКП и ВПУ рассчитаны на работу в условиях, соответствующих атмосфере типа 1 по ГОСТ 15150-69.
 - 4.1.4. Вид климатического исполнения АПКП и ВПУ УХЛ 3.1 по ГОСТ 15150-69.
 - 4.1.5. Степень зашиты оболочки IP30 по ГОСТ 14254-96.

4.1.6. По устойчивости к электрическим помехам в цепи основного источника электрического питания или в адресной линии, а также по помехоэмиссии и устойчивости к индустриальным радиопомехам АПКП и ВПУ соответствует требованиям третьей степени жесткости в соответствии с п.М.1.5 ГОСТ Р 53325-2012.

4.2. Характеристики назначения
4.2.1. Информационная емкость: количество АУ в "Минитроник АЗ2.Ех", не более 128.
•
4.2.2. Количество адресных линий, не более
4.2.3. Для адресной линии использовать провода типа «витая пара» по п.1.14. Суммарная длина всех участков кабеля с учетом ответвлений:
взрывозащищенной адресной линии, не более
4.2.4. Взрывоопасные смеси
по ГОСТ Р 52350.14-2006 (МЭК 60079-14:2002) категории IIA, IIB, IIC,
группы Т1Т6
4.2.5. Вид взрывозащиты искробезопасная электрическая цепь «ia»
4.2.6. Маркировка взрывозащиты АПКП [Ex i_a] IIC X,
маркировка взрывозащиты адресных устройств приведена в разделе 5.2, таблица 2.
4.2.7. Минимальное напряжение в адресной линии
4.2.8. Допустимое сопротивление утечки между проводами адресной линии, либо между адресной линией и конструкциями здания, не менее
4.2.9. Количество виртуальных ШС (групп АУ) для "Минитроник А32.Ех":
 пожарных ШС, не более
- охранных ШС, не более
– контрольных (инженерных) ШС, не более
4.2.10. Длина линии связи RS-485, не более
4.2.11. Количество выносных пультов, подключаемых к выходу RS-485, не более 7.
4.2.12. Информативность (по основным событиям), не менее
4.2.12. Информативность (по основным сооытиям), не менес
4.2.13. Время фиксации событий для охранных АУ 50÷70 мс, для пожарных АУ 300 мс.
4.2.14. Время доставки сообщений на АПКП и ВПУ пропорционально количеству АУ, при максимальном числе АУ, не более
4.2.15. Количество записей в журнале событий, не более 2300.
4.2.16. АПКП имеет выходы типа "открытый коллектор" (ОК) "Сирена", "Внимание/ По-
жар" с контролем цепи управления и выход ОК "Тревога". Параметры выходов: — напряжение питания
 ток в цепи контроля шлейфа управления ОК, не более
4.2.17. Суммарный допустимый ток для выходов ОК при их одновременном включении в режимах "ПОЖАР", "ТРЕВОГА", не более
4.2.18. АПКП имеет выходы на ПЦН: реле "Пожар", "Тревога" и "Неисправность" с пере-
ключающими контактами. Положение контактов реле "Неисправность" соответствует маркировке при включенном питании прибора.
4.2.19. Контакты реле выдерживают:
напряжение переменного тока не более

 длительно протекающий ток в активной нагрузке при напряжении: =12B, не более
4.2.20. АПКП допускает работу с электронными ключами Touch Memory (далее ТМ) или картами Proximity, выполняющими функцию дежурного или сотрудника. При отсутствии в памяти электронных ключей АПКП управляется без ограничений.
4.2.21. Допускается подключение к АПКП двух или более считывателей Touch Memory. Максимальное удаление считывателя (UTP-1 cat5e), не более
4.2.22. Количество ключей дежурного и сотрудника (ТМ или карт Proximity) в памяти АПКП, не более
4.2.23. Количество «объектовых» ключей и ключей «сотрудника» в памяти контроллера считывателя ключей КТМ (считывателя карт КПР), не более
4.3. Эксплуатационные характеристики
4.3.1. Температурный диапазон работоспособности от -10°C до +55°C.
4.3.2. Основное электрическое питание АПКП осуществляется от однофазной сети переменного тока частотой 50 Γ ц и напряжением
4.3.3. Емкость аккумулятора резервного источника АПКП (12В) 7 А-ч.
4.3.4. Время непрерывной работы АПКП с АУ от резервного источника питания 7 А-ч, не менее 24 часов в дежурном режиме и 1 часа в режиме тревоги.
4.3.5. Электрическое питание ВПУ осуществляется от источника питания постоянного то- ка напряжением
4.3.6. Средняя потребляемая АПКП мощность в дежурном режиме:
от встроенного резервного источника, не более
от основного источника, не более
4.3.7. Потребляемый АПКП ток в дежурном режиме от встроенного резервного источни-
ка, не более
4.3.8. Потребляемый ВПУ ток в дежурном режиме, не более
4.3.9. Габаритные размеры АПКП и ВПУ, не более
4.3.10. Масса ВПУ и АПКП без аккумулятора/с аккумулятором, не более 2,9/4,5 кг.
4.3.11. Срок службы АПКП и ВПУ не менее 10 лет.

5. УСТРОЙСТВО И РАБОТА АПКП и ВПУ

5.1. Устройство АПКП и ВПУ

5.1.1. АПКП состоит из корпуса с открывающейся передней панелью и системной платы, к которой с помощью разъемов подключена плата индикации. В состав ВПУ входит только плата индикации, установленная в аналогичном корпусе.

Габаритные и установочные размеры АПКП и ВПУ показаны на рис.2.

- 5.1.2. На переднюю панель АПКП и ВПУ выведены:
 - индикатор питания от основного источника "СЕТЬ";
 - индикатор неисправности батареи питания "АКБ";
 - индикатор автоматического режима пожаротушения "Автоматика отключена";
 - кнопки с индикацией: "Пожар", "Тревога", "Сообщение", "Неисправность", "Пуск", "Пуск остановить", "Постановка на охрану", "Отключение", "Звук";
 - кнопка "Отмена тревоги", кнопки Журнал "Вверх", "Вниз".

10 ЮНИТ.437241.400.Ех ТО

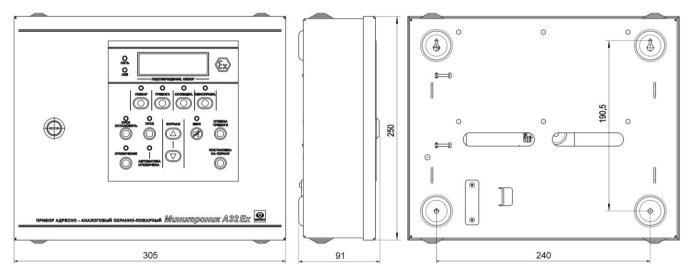


Рис.2. Габаритный чертеж и установочные размеры АПКП и ВПУ.

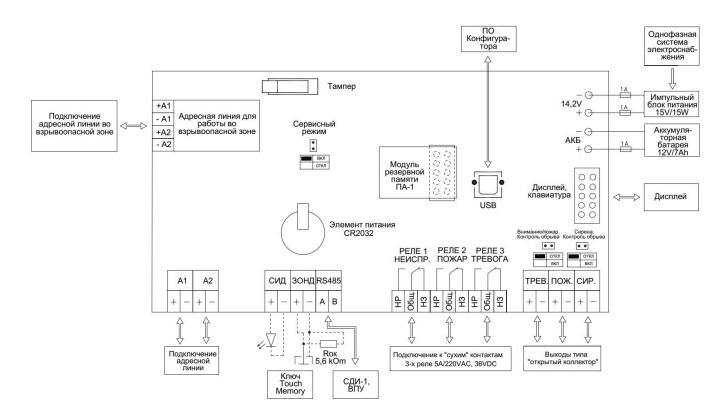


Рис. 3. Расположение клемм подключения на системной плате АПКП.

- 5.1.3. На блоке питания АПКП (рис.3) расположены клеммы питания ≈220В и заземления.
- 5.1.4. На системной плате (рис.3) расположены клеммы:
 - подключения кольцевой взрывозащищенной адресной линии;
 - подключения кольцевой адресной линии общего применения;
 - подключения АУ для программирования;
 - подключения считывателя ключей (карт) доступа со светодиодом;
 - выход RS-485 для подключения выносных пультов со светодиодным или ЖК-индикатором (до 7 шт.) и передатчика радиоканального мониторинга;
 - трех выходов ОК "Сирена", "Внимание/Пожар", "Тревога/Лампа";
 - трех выходов реле типа "переключающий сухой контакт" для передачи сообщений на ПЦН "Неисправность", "Тревога" и "Пожар".
- 5.1.5. На системной плате рис.3 расположен также порт USB для подключения компьютера и разъем для установки дополнительной платы памяти.

5.1.6. В случае, если считыватель ключей Touch Memory не подключен к плате АПКП, клеммы подключения должны быть зашунтированы оконечным резистором Rok 5.6 кОм.

ВНИМАНИЕ! Снятие и установку дополнительной платы памяти производить только при отключенном питании прибора.

- 5.1.7. На системной плате рис.3 расположены три перемычки (три джампера):
- джампер 1 для перехода в режим программирования АПКП (при программировании джампер замкнут);
- джампер 2 для отключения (джампер замкнут) контроля шлейфа управления "Внимание/Пожар";
- джампер 3 для отключения (джампер замкнут) контроля шлейфа управления сиреной.

5.2. Состав адресных устройств

- 5.2.1. К адресной линии АПКП в произвольном порядке и в удобном месте подключаются АУ, тип и назначение которых представлены в табл.2. Питание АУ производится от адресной линии, если не указано иное. При подключении к системе устройств, требующих питания от дополнительного источника, ввод во взрывоопасную зону их линий питания необходимо осуществлять через искрозащитный барьер с соответствующими параметрами.
- 5.2.2. Параметры искробезопасной цепи для каждого АУ позволяют подключать их к АПКП в любом количестве в пределах 128 АУ. Распределение АУ между двумя адресными линиями произвольное.

Табл. 2. Список устройств, подключаемых к АПКП

No	Наименование,			
	*	Назначение		
1	тип устройства Извещатель пожарный дымовой адресно-аналоговый с системой самотестирования ИП 212-108.Ех с выносным индикатором ВУОС, далее по тексту «ДИП»	Измерение уровня дыма в точке установки и обработка по интеллектуальным алгоритмам. 1. Маркировка взрывозащиты 0 Ex ia HC T6 . 2. Самодиагностика, контроль дымового канала. 3. Контроль запыленности в процентах от допустимой величины, компенсация запыленности. 4. Автоматическое переключение режимов «День», «Ночь» с изменением чувствительности.		
2	Извещатель пожарный газовый адресно-аналоговый с системой самотестирования ИП 435-7.Ех с выносным индикатором ВУОС, далее по тексту «ИПГ»	 Предварительный сигнал «Предупреждение» Измерение концентрации угарного газа (СО) в точке установки и обработка по интеллектуальным алгоритмам. Маркировка взрывозащиты 0 Ex ia IIC T6. Сверхраннее обнаружение пожара на стадии тления. Нечувствителен к пыли, не склонен к ложным срабатываниям. Автоматическое переключение режимов «День», «Ночь» с изменением чувствительности. Предварительный сигнал «Предупреждение». Применение как в пожарной сигнализации, так и в системе контроля загазованности СО и управления вентиляцией совместно с модулем А16-МАУ.Ех. 		
3	Извещатель пожарный тепловой максимально- дифференциальный адресно-аналоговый ИП 101-50.Ех с выносным индикатором ВУОС	Измерение температуры и скорости подъема температуры в точке установки. 1. Маркировка взрывозащиты 0 Ex ia IIC T6 . 2. Температурный диапазон от -40°C до +85°C. 3. Классы A0R (52°C), A1R (54-65°C), A2R (54-70°C), A3R (64-76°C), BR (69-85°C)		

	далее по тексту «ИПТ»			
	Извещатель пожарный	Извещение о пожаре путем нажатия кнопки.		
4	ручной адресный	1. Маркировка взрывозащиты 0 Ех іа ПС Т6 .		
4	А16-ИПР.Ех	2. Простой возврат кнопки инструментом (стержень ди		
	далее по тексту «ИПР»	метром 3мм).		
	Адресная метка пожарная	Контроль ШС с пожарными извещателями с НЗ контакт-		
	A16-TK.Ex,	ным выходом. Длина шлейфа до 300м.		
	далее по тексту «ТК»	1. Маркировка взрывозащиты 0 Ех іа ІІС Т6 .		
5		2. Различает срабатывание одного или двух извещателей в		
		шлейфе адресной метки.		
		3. Поддерживает мигание светодиодов сработавших изве-		
		щателей.		
	A ====================================	4. Максимальное количество извещателей – 20 шт.		
	Адресная метка пожарная	Контроль ШС с токопотребляющими пожарными извеща-		
	однопороговая A16-ТК Ех.С	телями с НР выходом. Длина шлейфа до 800м.		
	Требует питания =12/24В.	1. Маркировка взрывозащиты 0 Ex ia IIC T6 X . 2. Контроль ШС с подключенными линейными извещате-		
6	требует питания –12/24 В .	лями, извещателями пламени с НР контактным выходом.		
		3. Различает срабатывание одного извещателя (однопоро-		
		говая схема включения).		
		4. Оптическая развязка адресной линии.		
	Модуль адресный управ-	Управление одним исполнительным устройством.		
	ляющий	1. Маркировка взрывозащиты 0 Ex ia II C T6 X.		
	A16-MAY.Ex	2. Выход реле (переключающие контакты до 5А/12В или		
	далее по тексту «МАУ»	0,5A/220B).		
	•	3. Импульсный (5 сек) или постоянный (до отмены трево-		
7		ги) режимы включения реле.		
		4. Контроль цепи управления и питания исполнительного		
		устройства, внутренних цепей нагрузки.		
		5. Включение реле по сигналам пожар, тревога, неисправ-		
		ность, при срабатывании датчиков состояния и т.п.		
	M ·	6. Питание МАУ от адресной линии.		
	Модуль адресный управ-	Выход напряжения (=12/24В, 3А) для управления шлей-		
	ляющий оповещением,	фом с несколькими устройствами оповещения, пожароту-		
	пожаротушением А16-УОП.Ех ,	шения. 1. Моркировка разрупорациях и О. Е.у. in II.C. Т.6. У		
	далее по тексту «УОП».	1. Маркировка взрывозащиты 0 Ex ia HC T6 X . 2. Контроль шлейфа управления на обрыв и К3 при обрат-		
8	Требует питания =12/24В.	е ной полярности.		
	1 ресуст питапил 12/24В.	3. Импульсный (5 сек) или постоянный (до отмены трево-		
		ги) режимы включения реле.		
		4. Включение реле по сигналам пожар, тревога, неисправ-		
		ность, при срабатывании датчиков состояния и т.п.		
		5. Оптическая развязка адресной линии.		
	Модуль адресный управ-	Управление одним направлением с модулями порошково-		
	ления пожаротушением	го, аэрозольного, газового пожаротушения		
	А16-УПТ.Ех ,	1. Маркировка взрывозащиты 0 Ех іа ІІС Т6 Х .		
	далее по тексту «УПТ».	2. Управление табло «Автоматика включена», «Автомати-		
	Требует питания =12/24В	ка выключена», «Порошок (Газ, Аэрозоль) уходи», «Поро-		
9		шок (Газ, Аэрозоль) не входи» с контролем на обрыв и КЗ.		
		3. Встроенный звуковой оповещатель (сирена).		
		4. Контроль шлейфа датчика открытия двери.		
		5. Контроль считывателя Touch Memory для дистанцион-		
		ного включения/выключения автоматики пожаротушения.		
	<u> </u>	6. Память – 40 ключей.		

		7. Оптическая развязка адресной линии.		
	Адресная метка охранная	Контроль трех ШС с охранными или контрольными (ин-		
	A16-TK-3.Ex,	женерными) извещателями с НЗ контактным выходом.		
10	далее по тексту «ТК-3»	1. Маркировка взрывозащиты 0 Ех іа ІІС Т6 .		
		2. Длина каждого ШС до 300м.		
		3. Максимальное количество извещателей в ШС – 6 шт.		
	Контроллер считывателя	Контроль считывателя ключей Touch Memory для дистан-		
	охранно-пожарный	ционной постановки/снятия объекта с охраны.		
	A16-KTM.Ex,	1. Маркировка взрывозащиты 0 Ех іа ІІС Тб .		
	далее по тексту «КТМ»	 Память – 40 ключей. 		
11		3. Контроль шлейфа с охранными извещателями с НЗ кон-		
		тактным выходом (до 6 извещателей). Длина шлейфа 300м.		
		4. Контроль шлейфа с инженерными извещателями с НЗ		
		контактным выходом (до 20 извещателей) длиной до 300м.		
		5. Двухцветная индикация со считывателем TR-R/G ЮТ.		
	Адресная метка охранная	Контролирует закрытое положение двери, люка, створки		
12	A16-CMK.Ex,	клапана и т.п.		
12	далее по тексту «ТК-3»	1. Маркировка взрывозащиты 0 Ex ia IIC T6 .		
	Размыкатель линии	Изолятор короткозамкнутого участка адресной линии.		
	РЛ-2.Ех	1. Маркировка взрывозащиты 0 Ех іа ПС Т6 .		
	Не является адресным	2. При КЗ размыкает оба провода адресной линии.		
	устройством	3. Автоматическое восстановление линии при устранении		
13	Jerpenerzem	замыкания.		
		4. Защита от короткого замыкания в кольцевой адресной		
		линии и в ответвлении.		
		5. Оптическая индикация режима «Изоляция».		
	Извещатель пожарный газо-			
	вый адресно-аналоговый с	новки и обработка по интеллектуальным алгоритмам.		
	системой самотестирования	1. Сверхраннее обнаружение пожара на стадии тления.		
	ИП 435-7 с выносным ин-	2. Нечувствителен к пыли, не склонен к ложным срабаты-		
	дикатором ВУОС, далее по	ваниям.		
14	тексту «ИПГ»	3. Автоматическое переключение режимов «День»,		
		«Ночь» с изменением чувствительности.		
		4. Предварительный сигнал «Предупреждение».		
		5. Построение системы контроля загазованности СО и		
		управления вентиляцией совместно с модулем А16-МАУ.		
	Извещатель пожарный	Измерение уровня дыма в точке установки и обработка по		
	дымовой адресно-аналого-	интеллектуальным алгоритмам.		
	вый с системой самоте-	1. Самодиагностика, контроль дымового канала.		
1.5	стирования ИП 212-108 ,	2. Контроль запыленности в процентах от допустимой ве-		
15	далее по тексту «ДИП»	личины, компенсация запыленности.		
		3. Автоматическое переключение режимов «День», «Ночь»		
		с изменением чувствительности.		
		4. Предварительный сигнал «Предупреждение»		
	Извещатель пожарный	Измерение температуры и скорости подъема температуры		
	тепловой максимально-	в точке установки.		
16	дифференциальный	1. Температурный диапазон от -40°C до +85°C.		
10	адресно-аналоговый	2. Классы A0R (52°C), A1R (54-65°C), A2R (54-70°C), A3R		
	ИП 101-50,	(64-76°C), BR (69-85°C)		
	далее по тексту «ИПТ»	·		
	Извещатель пожарный	1. Извещение о пожаре путем нажатия кнопки.		
17	ручной адресный	2. Простой возврат кнопки инструментом (стержень диа-		
17	А16-ИПР	метром 3мм).		
	далее по тексту «ИПР»			

	Τ.			
23	Адресная метка охранная и контрольная A16-TK-3 , далее по тексту «ТК-3»	Контроль трех ШС с охранными или контрольными (инженерными) извещателями с НЗ контактным выходом. 1. Двухпороговые ШС длиной до 300м каждый. 2. Максимальное количество извещателей в ШС – 6 шт.		
24	Контроллер считывателя охранно-пожарный A16-КТМ , далее по тексту «КТМ»	1. Контроль считывателя Touch Memory для дистанционной постановки/снятия объекта с охраны. 2. Память — 40 ключей. 3. Контроль шлейфа с охранными извещателями с НЗ контактным выходом (до 6 извещателей). Длина шлейфа 300м. 4. Контроль шлейфа с контрольными извещателями с НЗ контактным выходом (до 20 извещателей) длиной до 300м. 5. Двухцветная индикация со считывателем TR-R/G ЮТ.		
25	Контроллер считывателя охранно-пожарный A16-КПР , далее по тексту «КПР» Требует питания =12B	То же, что и КТМ, предназначен для подключения считывателя Proximity с выходом в формате Wigand-26. Имеет оптическую развязку клемм подключения считывателя. Для программирования карт к АПКП необходимо подключить считыватель Proximity с выходом в формате Touch Memory – Iron Logic MATRIX-II.		
26	Блок резервного питания адресный БПРА , (БПРА 24-2/7), далее по тексту «БПРА»	 Контроль основного питания с передачей на АПКП. Контроль наличия и разряда аккумуляторной батареи. =24B, 2A, до7А-ч. Оптическая развязка адресной линии. 		
27	Адресная метка охранная A16-СМК , далее по тексту «СМК»	Контролирует закрытое положение двери, люка, створки клапана и т.п.		
Размыкатель линии РЛ-2 Не является адресным устройством 28		 Изолятор короткозамкнутого участка адресной линии. При КЗ размыкает оба провода адресной линии. Автоматическое восстановление линии при устранении замыкания. Защита от короткого замыкания в кольцевой адресной линии и в ответвлении. Оптическая индикация режима «Изоляция». 		

5.3. Основные принципы работы АПКП

5.3.1. Адресно-аналоговая система сигнализации "Минитроник A32.Ex" предназначена для защиты средствами пожарной и охранной сигнализации средних и малых объектов - таких, на которых ранее применялись шлейфовые приборы, рассчитанные на 2÷32 шлейфа сигнализации.

В системе заложены типовые шаблоны работы АПКП, облегчающие его программирование.

5.3.2. Адресные устройства в системе "Минитроник A32.Ex" подключают к двум адресным линиям в любой пропорции. При этом сохраняется единая нумерация адресов устройств, задаваемая при программировании в любой последовательности.

Для удобства программирования адресные устройства в памяти АПКП объединены в группы (охраняемые зоны), именуемые в дальнейшем «шлейф сигнализации» (ШС) по аналогии со шлейфовыми приборами. В отличие от этих приборов в «Минитроник А32.Ех» шлейфы сигнализации являются виртуальными, сформированными при программировании прибора.

5.3.3. Для устройств, принадлежащих одному виртуальному ШС, сохраняется логика, присущая поведению устройств в ШС обычного прибора. Так, например, пожарные ШС являются двухпороговыми, и при срабатывании любого автоматического пожарного извещателя в ШС формируется сигнал «Внимание», а при срабатывании второго извещателя – сигнал «Пожар». Управляющие модули МАУ срабатывают при возникновении запрограммированно-

го события в своем ШС.

- 5.3.4. Число виртуальных ШС (охраняемых зон) фиксировано, и для АПКП "Минитроник A32.Ex" составляет:
 - 32 охранных ШС, обозначения: А1-А8, Б1-Б8, В1-В8, Г1-Г8;
 - 32 пожарных ШС, обозначения: П1-П32;
 - 32 контрольных (инженерных) ШС, обозначения: К1-К32;
 - 32 «группы управления ШС», обозначения: У1-У32.

Так же как в шлейфовых приборах, можно задействовать любое требуемое количество ШС, разместив в них (программно) извещатели, модули и адресные метки. Остальные ШС останутся неактивными.

5.3.5. Каждый виртуальный ШС может содержать любое число адресно-аналоговых извещателей и управляющих модулей – от нуля до 128 АУ.

Метка ТК-3 имеет три неадресных охранных шлейфа сигнализации, и программируется в один, два или три виртуальных ШС.

5.3.6. Для формирования сигнала на ПЦН или общего сигнала управления оповещением, вентиляторами дымоудаления и т.п., несколько виртуальных ШС можно объединять в «группы управления ШС» У1-У32.

В группы управления допускается объединять только однотипные ШС: пожарные, либо охранные, либо контрольные.

МАУ, установленные в «группе управления ШС», срабатывают по определенному событию в любом из ШС группы.

5.3.7. Взрывозащищенность АПКП и адресных устройств обеспечивается конструкцией и схемотехническим исполнением в соответствии с требованиями ГОСТ 31610.0-2012 (IEC 60079-0:2004), ГОСТ 31610.11-2012/IEC 60079-11:2006.

Взрывозащищенность АПКП и адресных устройств обеспечивается видом взрывозащиты «искробезопасная электрическая цепь»: гальванической развязкой взрывозащищенной адресной линии, ограничением тока в ней, ограничением токов потребления АУ от адресной линии, ограничением энергии, накапливаемой в конденсаторах, применяемых в АУ, и другими в соответствии с ГОСТ.

Для защиты от перемены полярности во взрывозащищенных адресных устройствах используется диод.

- 5.3.8. Параметры искробезопасной цепи позволяют подключать АУ к взрывозащищенной адресной линии в любом сочетании в пределах 128 АУ при условии сохранения суммарной длины всех участков адресной линии, с учетом ответвлений, не более 3000м.
- 5.3.9. АУ, такие как А16-УОП.Ех, А16-УПТ.Ех и другие, требующие дополнительного питания, имеют оптическую развязку, разделяющую цепи с дополнительным питанием и цепи, связанные с адресной линией. Цепи, требующие дополнительного питания (в том числе и контакты реле А16-МАУ.Ех), следует запитывать через барьер искрозащиты от источника, расположенного вне взрывоопасной зоны.
- 5.3.10. Знак «Х», следующий за маркировкой взрывозащиты, означает, что при эксплуатации АПКП и адресных устройств необходимо выполнять следующие требования:
 - адресные модули и извещатели, требующие дополнительного питания, а также цепи «сухой контакт» управляющих модулей должны подключаться к искробезопасной цепи с параметрами, соответствующими условиям применения устройств во взрывоопасной зоне. Для подключения устройств с видом взрывозащиты d-оболочка и других к цепи «сухой контакт» управляющих модулей A16-MAУ, УДП-ИР или энергетическому выходу модулей A16-УОП.Ех, A16-УПТ.Ех модули следует размещать во взрывозащищенных коммутационных коробках;
 - не подключать к взрывозащищенной адресной линии прибора "Минитроник A32.Ex" посторонние устройства кроме адресных устройств, предусмотренных таблицей 1, при количестве адресных модулей и извещателей не более 128, что необходимо для обеспечения

значений искробезопасных параметров адресной линии, не превышающих значений, приведенных в разделе "Основные технические данные" раздела 2;

- проводка взрывозащищенной адресной линии вне взрывоопасной зоны должна быть защищена от механических повреждений в соответствии с ГОСТ IEC 60079-14-2011.
- извещатели ИПР-И.Ех, А16-ИПР.Ех, УДП-И.Ех, УДП-ИР.Ех для исключения опасности от электростатических зарядов при эксплуатации необходимо протирать влажной тканью;
- при эксплуатации модулей A16-УОП.Ex, УДП-ИР.Ex, A16-УПТ.Ex, A16-ТК.Ex-С клеммы дополнительного питания, а также энергетические выходы должны подключаться к искробезопасным цепям с параметрами, соответствующими условиям применения устройств во взрывоопасной зоне.

5.4. Алгоритмы работы пожарных извещателей согласно СП484.1311500.2020

5.4.1. Выбор алгоритма работы пожарного извещателя производится с помощью ПО «Конфигуратор» или через меню АПКП. Для работы по алгоритмам А или В следует выбрать установку режима работы извещателя с формированием сигнала «Пожар», а для алгоритма С – режима с формированием сигнала «Внимание». Согласно алгоритму С сигнал «Пожар» формируется при срабатывании второго извещателя в ЗКПС.

АПКП позволяет максимально автоматизировать работу по пуско-наладке, чтобы сократить объем программирования, трудозатраты и сделать работу специалистов простой и эффективной, не требующей специальных навыков. Так, выбор алгоритма А или В производится автоматически: дымовые извещатели работают по алгоритму В, а ручные – по алгоритму А.

При этом алгоритм В обеспечивает перезапрос состояния извещателя за время примерно 5 сек (требование СП – не более 60 сек), поэтому алгоритм В практически не увеличивает время обнаружения пожара по сравнению с алгоритмом A, и может быть применен наравне с ним.

6. РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ

6.1. Определение основных параметров системы

Рекомендуем определить основные параметры системы в следующей последовательности.

6.1.1. В соответствии с техническим заданием и действующими нормативными документами разместить на плане здания необходимое количество пожарных и охранных извещателей, контроллеров считывателей. Управляющие модули расположить вблизи управляемых устройств.

При расстановке извещателей и модулей во взрывоопасной зоне использовать только АУ во взрывозащищенном исполнении (пп.1-13 табл.2).

- 6.1.2. Определить места установки адресных меток, обеспечивающие их вандалозащищенность и, одновременно, доступ для обслуживания меток. Часто метки устанавливают в запотолочном пространстве или в коридорах в верхней части стены, что удобно для последующего соединения их адресной линией. Охранные адресные метки рекомендуется устанавливать внутри защищаемого помещения, чтобы исключить возможность саботажных действий с ними.
- 6.1.3. Определить наиболее подходящее место расположения АПКП за пределами взрывоопасной зоны, желательно рядом с ней. Участок взрывозащищенной адресной линии, пролегающий вне зоны, должен быть надежно защищен от доступа посторонних лиц.
- 6.1.4. Определить место расположения выносных пультов управления: ВПУ для создания полнофункционального дополнительного пульта управления, и светодиодного пульта СДИ-1 для оперативного управления постановкой/снятием с охраны 32-х ШС. Подключить пульты к АПКП к выходу RS-485 проводом UTP-1 или UT 505нг(A)-FRLS FE 180 1х2х0,5mm, UT 505нг(A)-FRHF FE 180 1х2х0,5mm.

Общее количество выносных пультов не должно превышать семи.

При необходимости предусмотреть подключение к линии RS-485 коммуникатора радиоканального мониторинга.

- 6.1.5. Дополнительный блок питания, необходимый для питания устройств оповещения, пожарной автоматики, инженерных устройств, разместить за пределами взрывозащищенной зоны в удобном месте. Для обеспечения взрывозащищенности на выходе источника питания устанавливают барьер искрозащиты с требуемыми параметрами и обеспечивают механическую защиту кабеля питания на участке между барьером взрывозащиты и взрывоопасной зоной. Могут применяться барьеры искрозащиты РИФ-П1141, РИФ-П1142, РИФ-П1291, РИФ-П1292, Корунд М720, Корунд М730, Корунд М740 и аналогичные. При выборе барьера следует учитывать величину его проходного сопротивления, которое будет ограничивать ток через нагрузку.
- 6.1.6. Выбрать схему включения адресной линии: "кольцо" или "кольцо с ответвлениями" (подробнее в п.6.2). Согласно требованиям СП484.1311500.2020 кольцевая схема обеспечивает более высокую надежность работы системы за счет сохранения связи с устройствами при единичном обрыве адресной линии. Структура адресной линии "кольцо с ответвлениями" позволяет несколько снизить расход кабеля. Необходимо учесть, что к ответвлению может быть подключено не более одного ЗКПС, а ручные извещатели должны быть подключены к отдельным ответвлениям.

Особенностью работы адресных систем является то, что при коротком замыкании адресной линии прекращается работа одновременно всех АУ. Для защиты адресной линии от короткого замыкания и выполнения требований п.6.3.4 СП484.1311500.2020 необходимо на границах каждой ЗКПС установить размыкатели линии РЛ-2.Ех, а также защитить ими ручные извещатели. Размыкатели линии РЛ-2.Ех изолируют короткозамкнутый участок адресной линии и сохраняют работоспособность остальной ее части с подключенными к ней АУ.

- 6.1.7. **Проложить адресную линию** кабелем UTP-1 или UT 505нг(A)-FRLS FE 180 1x2x0,5mm (0,2мм²) или 1x2x0,8mm (0,5мм²), UT 505нг(A)-FRHF FE 180 1x2x0,5mm по оптимальному маршруту так, чтобы максимальное удаление адресных устройств от любой из клемм АПКП по длине адресной линии не превышало допустимого значения, которое в зависимости от количества АУ составляет от 2 до 3 тысяч метров (см. рис. 10).
- 6.1.8. Адресно-аналоговые пожарные извещатели с системой самотестирования: дымовые ИП 212-108.Ех, газовые (СО) ИП 435-7.Ех, тепловые ИП 101-50.Ех и ручные адресные извещатели А16-ИПР.Ех подключить непосредственно к взрывозащищенной адресной линии, их аналоги общего применения подключить ко второй адресной линии. При выборе типа извещателя рекомендуем предпочтение отдавать газовым извещателям, т.к. они обеспечивают сверхраннее обнаружение пожара на стадии тления, не чувствительны к пыли и не склонны к ложным срабатываниям.
- 6.1.9. Шлейфы с неадресными контактными пожарными извещателями подключить к адресной метке ТК кабелем UT 505нг(A)-FRLS FE 180 1х2х0,5mm, UT 505нг(A)-FRHF FE 180 1х2х0,5mm длиной до 300м, не превышая допустимое количество извещателей (20 шт.). Рекомендуем использовать одну метку на каждое помещение для более быстрого поиска очага возгорания.
- 6.1.10. Шлейфы с неадресными токопотребляющими пожарными извещателями подключить к адресной метке A16-TK.Ex-C проводом UT 105- или UT 505нг(A)-FRLS FE 180 1x2x0,5mm, UT 105- или UT 505нг(A)-FRHF FE 180 1x2x0,5mm длиной до 800м, не превышая допустимое количество извещателей (суммарный ток потребления до 1мА). Рекомендуем использовать одну метку на каждое помещение для более быстрого поиска очага возгорания.
- 6.1.11. **Определить количество устройств, требующих контроля.** Эти устройства контролируют с помощью нормально-замкнутых контактов, например, контактов положения заслонки клапана дымоудаления, датчиков утечки воды, газа (CH4) и т.п.

Нормально-замкнутые контакты датчиков подключить к адресной метке ТК-3 кабелем КСПВ 2x0,5, UT 505 нг(A)-FRLS FE 180~1x2x0,5 mm или UT 505 нг(A)-FRHF FE 180~1x2x0,5 mm длиной до 300м. Каждому шлейфу ТК-3 может соответствовать одно из 3-x типов сообщений, которые устанавливаются программно.

6.1.12. Шлейфы с охранными извещателями с нормально-замкнутыми контактами

подключить к адресной метке ТК-3 – не более 6-ти извещателей на каждый из трех шлейфов, проложенных проводом типа КСПВ 1х0,5 длиной до 300м.

Определить режим работы снятых с охраны шлейфов сигнализации: с контролем обрыва и замыкания (в этом случае параллельно НЗ-контактам извещателей следует установить шунтирующие резисторы), или без контроля.

Для удобства управления постановкой/снятием ШС с охраны кабелем UTP-1 подключить к АПКП считыватель ключей Touch Memory TR-R/G ЮТ с двухцветным индикатором. Удаление считывателя – до 50м.

6.1.13. **При необходимости дистанционного снятия/постановки помещения на охрану** рядом с дверью помещения установить считыватель ключей Touch Memory TR-R/G ЮТ с двухцветным индикатором и подключить его к контроллеру КТМ кабелем UTP-1. Для программирования ключей необходимо к АПКП также подключить считыватель TR-R/G ЮТ.

Нормально-замкнутые выходные контакты охранных извещателей подключить к шлейфу КТМ проводом типа КСПВ 1х0,5 длиной до 300м — не более 6 извещателей. Аналогично ТК-3 определить режим работы снятого с охраны шлейфа сигнализации: с контролем обрыва и замыкания, или без контроля.

При необходимости оборудования помещений считывателями карт Proximity следует использовать модуль A16-КПР, подключив к нему считыватель, работающий в формате Wigand-26. Для программирования базы карт к АПКП подключают считыватель Proximity, имеющий выход Touch Memory (рекомендуется использовать считыватель Iron Logic MATRIX-II).

- 6.1.14. Количество охранных адресных устройств до 128 (при расчете ТК-3 учитывается как одно адресное устройство). Однако эти АУ могут быть установлены не более чем в 32 виртуальных ШС. Это означает, что при возникновении события его можно идентифицировать с точностью до 128 различных адресов, но ставить и снимать с охраны их можно только группами в составе виртуальных ШС.
- 6.1.15. Для управления доступом в помещение рядом с дверью устанавливают считыватель ключей Touch Memory TR-R/G ЮТ и подключают его к контроллеру КТМ кабелем UTP-1 (либо считыватель карт Proximity с модулем КПР). Для управления электромагнитным или электромеханическим замком его подключают соответственно к НЗ или НР контактам МАУ.

Шлейф модуля КТМ (КПР) со свойством СКУД продолжает выполнять охранные функции. В ШС, поставленном на охрану, при срабатывании охранного извещателя АПКП переходит в режим "Тревога".

Состояние	Реле тревога	ОК трево- га/лампа	ОК сирена	Внутренний сигнал АПКП	Индикатор считывателя прибора
Снят с охраны	Выкл	Выкл	Выкл	Выкл	Выкл
Задержка постановки	Выкл	Мигает: вкл 0,5с /выкл. 1,5с	Выкл	Выкл	Однократный проблеск в мо- мент предъявле- ния ключа ТМ
Момент постановки	Вкл	Вкл	Кратковременное включение 3c	Кратковременное включение 3c	Вкл
На охране	Вкл	Вкл	Выкл	Выкл	Вкл
Задержка на снятие	выкл	Мигает: вкл 1,5с/выкл 0,5с	Выкл	Выкл	Выкл
Тревога	Выкл	Мигает: вкл 1,5с/выкл 0,5с	Вкл	Вкл	Мигает: вкл 1,5с/выкл 0,5с

Табл.3. Состояние управляющих выходов

6.1.1. **Входной охранной зоной с задержкой на вход и выход** может быть назначен любой из охранных ШС. Управление состоянием зоны возможно при помощи меню прибора / при помощи ключа ТМ (карты Proximity) на приборе / при помощи ключа ТМ на

20 ЮНИТ.437241.400.Ех ТО

КТМ / с пульта СДИ. При взятии или снятии этой зоны с охраны обеспечивается передача сообщения на пульт ПЦН.

6.1.2. Определить количество сигналов управления устройствами пожарной автоматики (УПА), устройствами оповещения, инженерными системами. Исходя из этого, выбрать тип и количество управляющих АУ и расположить их в удобном месте.

В случае управления одним устройством при наличии внешнего источника питания напряжением от ≅12В до ≈220В рекомендуется использовать модуль МАУ с «сухими» (релейными) контактами, с контролем цепи управления и контролем наличия внешнего питания.

В процессе контроля цепи управления через нагрузку протекает ток контроля до 0,5мA, что может приводить к возникновению паразитной подсветки световых табло или шумов в оповещателях. Для устранения этих явлений необходимо предусмотреть гасящие резисторы, включенные параллельно табло (0,1-5 кОм, подбирается в зависимости от мощности табло).

Для управления шлейфом с несколькими устройствами, питающимися напряжением =12/24В (несколькими оповещателями, либо несколькими модулями порошкового пожаротушения и т.п.) выбирают модуль УОП.

Каждое устройство подключают к шлейфу управления через диодный ключ, рассчитанный на рабочий ток устройства. Контроль исправности шлейфа управления в дежурном режиме производится на обратной полярности питающего напряжения с помощью оконечного резистора.

При необходимости в удобном месте устанавливают кнопку ручного пуска (кнопка с фиксацией и нормально-разомкнутыми контактами) и подключают ее к модулю УОП.

Питание большого количества пьезосирен (более 4-х одновременно включенных) рекомендуется производить от отдельного источника питания, так как эти устройства создают мощные сигналы помехи в проводах питания.

6.1.3. Для управления шлейфом с несколькими табло «ВЫХОД» устанавливают модуль УОП-В. К одному модулю допускается подключать до 6 табло с суммарным током потребления не более 0,4A. Конфигурация шлейфа управления — луч с ответвлениями, оконечный резистор не требуется. Предусмотреть питание модуля =12/24B.

Питание модуля и шлейф управления табло прокладывают кабелем типа UT 505нг(A)-FRLS FE 180~1х2х1,0mm или UT 505нг(A)-FRHF FE 180~1х2х1,0mm. Точное значение необходимого сечения кабеля определяют расчетным путем.

При установке табло «Выход» во взрывоопасной зоне их следует подключать через барьер искрозащиты. Суммарный ток потребления табло «Выход» ограничивается величиной проходного сопротивления выбранного барьера взрывозащиты.

6.1.4. **Направление автоматического пожаротушения во взрывоопасной зоне** формируют с помощью пожарного ШС АПКП «Минитроник А32.Ex». В ШС включают не менее двух дымовых пожарных извещателей и модуль А16-УПТ или А16-УПТ.Ex.

Следует различать два основных варианта оборудования взрывоопасных помещений средствами автоматического пожаротушения. В первом случае, показанном на рис.4, оборудованию подлежит взрывоопасное помещение, расположенное внутри взрывобезопасной зоны, либо граничащее с ней. При этом допускается применение модуля A16-УПТ в общепромышленном исполнении.

Внутри взрывоопасного помещения устанавливают пожарные извещатели и табло «Порошок уходи». Модуль порошкового, аэрозольного, газового пожаротушения подключают к шлейфу управления УПТ в соответствии с его Руководством по эксплуатации.

При необходимости управления несколькими модулями пожаротушения рекомендуется подключить их с помощью адресных модулей A16-MAУ.Ех или A16-УОП.Ех, как показано на рис.4.

Модули и табло включают через барьеры искрозащиты Корунд М720, Корунд М730, Корунд М740 и аналогичные, имеющие достаточную нагрузочную способность. Нагрузочная способность определяется величиной проходного сопротивления барьера, которое ограничивает величину тока и приводит к снижению напряжения в искробезопасной цепи.

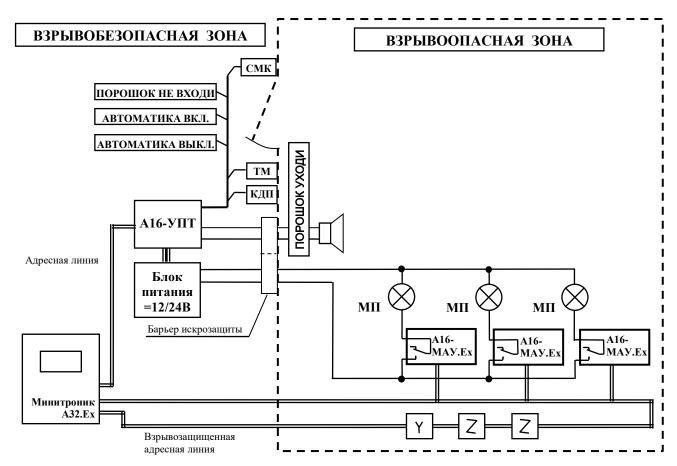


Рис.4. Размещение оборудования во взрывоопасном помещении, расположенном внутри взрывобезопасной зоны.

Все остальные устройства, такие как сам модуль A16-УПТ, табло «Автоматика включена», «Автоматика выключена», «Порошок не входи» («Аэрозоль не входи», «Газ не входи»), датчик открытия двери, считыватель TR-R/G ЮТ ключей Touch Memory с двухцветным оптическим индикатором, размещают снаружи взрывоопасной зоны. Рядом, над считывателем, устанавливают кнопку без фиксации для дистанционного пуска модулей пожаротушения (КДП).

Питание модуля УПТ и шлейфа с модулями пожаротушения осуществляют от внешнего источника напряжением =12/24B.

Пожарные извещатели, модули A16-MAУ.Ех и модуль A16-УПТ программно привязывают к одному пожарному ШС прибора «Минитроник A32.Ех», что обеспечивает совместный режим их работы. Модули A16-MAУ.Ех программируют на срабатывание по команде «Пуск», в импульсном режиме. В связи с ограничением тока, протекающего через барьер искрозащиты, при питании модулей от одного барьера, как показано на рис.4, рекомендуется производить веерный пуск модулей A16-MAУ.Ех, установив различные задержки их включения.

Для управления клапанами направлений в установках газового пожаротушения используют модули A16-MAУ.Ех или A16-УОП.Ех, включая их по событию «Пожар». Контроль состояния технологических установок (подача газа в линию, вес баллона и т.д.) осуществляют с помощью соответствующих датчиков, устанавливая их в контрольные ШС контроллеров КТМ.

Во втором варианте, показанном на рис.5, взрывоопасное помещение расположено внутри взрывоопасной зоны. В этом случае применяют все устройства во взрывозащищенном исполнении, а модуль УПТ устанавливают внутри помещения, чтобы использовать встроенное в модуль звуковое оповещение. Модуль УПТ и модули пожаротушения включают через барьеры искрозащиты. Пожарные извещатели и модули A16-MAУ.Ех программно привязывают к тому же ШС, что и модуль A16-УПТ.Ех. Модули A16-MAУ.Ех программируют на срабатывание по команде «Пуск», в импульсном режиме, предусматривая необходимую задержку для

веерного режима пуска модулей пожаротушения. При веерном пуске барьер искрозащиты рассчитывается на пусковой ток одного модуля пожаротушения.

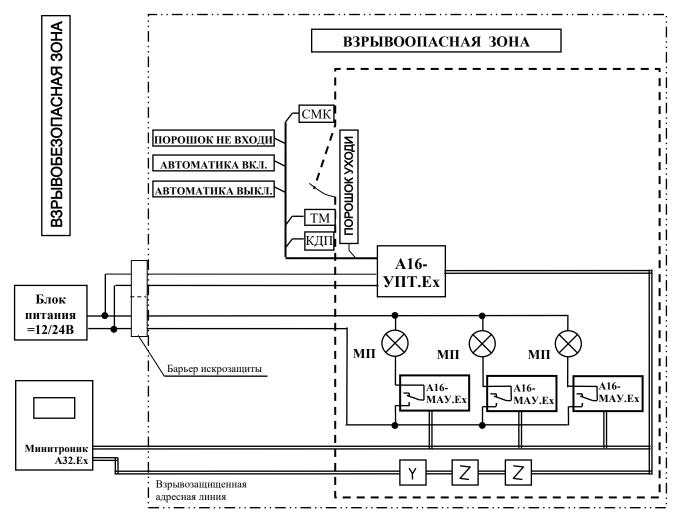


Рис.5. Размещение оборудования в помещении, расположенном внутри взрывоопасной зоны.

Модули A16-MAУ. Ех обеспечивают контроль исправности цепи управления каждым модулем пожаротушения в отдельности: при обрыве цепи A16-MAУ. Ех выдаст сообщение о неисправности.

6.1.5. Направление автоматического пожаротушения во взрывобезопасной зоне формируют с помощью пожарного ШС АПКП «Минитроник А32.Ех». В ШС включают не менее двух дымовых пожарных извещателей и модуль А16-УПТ. Питание модуля осуществляют от внешнего источника напряжением =12/24В.

Рядом с дверью снаружи помещения устанавливают световые табло «Автоматика включена», «Автоматика выключена», табло «Порошок не входи» («Аэрозоль не входи», «Газ не входи») и считыватель TR-R/G ЮТ ключей Touch Memory с двухцветным оптическим индикатором. Рядом, над считывателем, установить кнопку без фиксации для дистанционного пуска модулей пожаротушения (КДП).

Над дверью помещения с внутренней стороны разместить световое табло «Порошок уходи» («Аэрозоль уходи», «Газ уходи»). Разместить датчик открытия двери помещения (до 6 датчиков), подключить все устройства к УПТ. Модули порошкового, аэрозольного, газового пожаротушения подключить к шлейфу управления УПТ через диодные ключи.

Для управления клапанами направлений в установках газового пожаротушения использовать модули A16-MAУ или A16-УОП. Контроль состояния технологических установок (подача газа в линию, вес баллона и т.д.) осуществляют с помощью соответствующих датчиков, устанавливая их в контрольные ШС контроллеров КТМ или ТК-3.

6.1.6. Питание модуля осуществляют от внешнего источника напряжением =12/24В.

6.1.7. В случае если модули пожаротушения обладают характеристиками, позволяющими производить их пуск с помощью короткого импульса длительностью до 50 мс и суммарным током до 1А (например, пиропатроны, модули порошкового пожаротушения и др.), можно использовать экономичный режим питания с накопительным конденсатором и потреблением в режиме пуска не более 50 мА. Конденсаторный пуск позволяет для питания модуля использовать источник питания, встроенный в АПКП, прокладывать длинные линии питания проводами малого сечения, питать от одной линии несколько модулей УПТ.

При расчете сечения проводов питания УПТ при конденсаторном пуске следует исходить из условия потери напряжения в проводах не более 4В при работе с источником 24В, либо 1В при работе с источником 12В (в режиме питания от аккумуляторной батареи напряжение может снижаться до 11В). При этом ток учитывается как сумма токов питания модуля УПТ в режиме тревоги (50 мА) и одного из подключенных к нему табло (выбрать табло с наибольшим потреблением). Так, например, при использовании четырех табло с током потребления 20 мА каждое при подключении одного модуля УПТ к источнику 12В допустимое сопротивление линии составит: 1В/(0,02A+0,05A) = 14,3 Ом.

При прокладке кабеля питания модуля УПТ сечением $2x0.5 \text{ мм}^2$ (сопротивление 0.07 Ом/м) его длина не должна превышать $14.3/0.07 \approx 200 \text{м}$. При использовании кабеля FRLS 1x2x0.5 сопротивлением 0.18 Ом/м допустимая длина составит $14.3/0.18 \approx 80 \text{м}$.

Сечение и длина проводов шлейфа управления определяются обычным способом.

6.1.8. Для пуска устройств, требующих значительной мощности (например, при управлении электромагнитным клапаном, для которого требуется ток до 3A в течение 3 сек), питание модуля напряжением =12/24B осуществляют от дополнительного источника.

В модуле предусмотрен вход контроля наличия сетевого напряжения 220В, поступающего на этот источник питания. Контроль может быть отключен установкой джампера 7 (рис.3).

От одного источника допускается питание нескольких модулей, при этом допустимое расстояние в метрах (L) до удаленного модуля можно рассчитать по формуле:

$$L = K*S$$
,

где S — сечение кабеля, mm^2

 $K = 16 \text{ м/мм}^2$ при напряжении питания 12B,

 $K = 40 \text{ м/мм}^2$ при напряжении питания 24В.

6.1.9. К модулю УПТ может быть подключен только один модуль пожаротушения с соблюдением требований по контролю не только шлейфа управления, но и контроля цепей самих модулей пожаротушения.

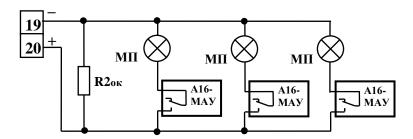


Рис.6. Схема подключения модулей пожаротушения ("МП") с контролем исправности цепи каждого модуля. $R2_{OK}=10$ кОм (0,25Вт, $\pm 5\%$). При количестве модулей A16-МАУ более 4-х резистор $R2_{OK}$ допускается не устанавливать.

При управлении несколькими модулями пожаротушения для контроля исправности цепи каждого модуля в отдельности их следует подключать с помощью адресных модулей А16-МАУ. В этом случае при обрыве цепи модуля пожаротушения А16-МАУ выдаст сообщение о неисправности. Питание шлейфа с модулями пожаротушения рекомендуется осуществлять по схеме рис.6 от модуля УПТ, так как он обеспечивает ограничение пускового тока, и применение ограничительного резистора не требуется.

Для синхронного включения А16-МАУ их программно привязывают к тому же ШС, что и

модуль А16-УПТ, с включением по событию «Пуск» в импульсном режиме. Время задержки включения модулей А16-МАУ следует установить равным нулю, т.к. А16-УПТ подает напряжение в цепь пуска только на 5 секунд.

6.1.10. При питании нескольких групп модулей от единого источника возможно организовать их веерное включение, что позволяет также уменьшить сечение проводов и увеличить их длину. Для этого шлейф с модулями пожаротушения необходимо подключить непосредственно к источнику питания через ограничительный резистор R1 (рис.7), а модулям A16-MAУ задать время задержки включения таким образом, чтобы их включение осуществлялось поочередно.

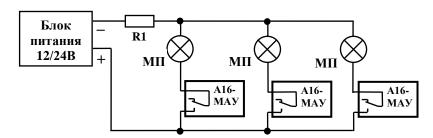


Рис.7. Схема подключения модулей пожаротушения ("МП") с контролем исправности цепи каждого модуля и с веерным включением модулей.

Сопротивление резистора должно рассчитываться по формуле $R1=(U-2)/I-R_\Pi$, где U- напряжение разряженной аккумуляторной батареи (11В или 22В), 2- минимальное напряжение срабатывания модуля пожаротушения, I- требуемая величина тока (в нашем примере 1А), $R_\Pi-$ сопротивление проводов до наиболее удаленного модуля.

Мощность резистора определяется для случая короткого замыкания цепи: $P = U^2_{max}/R1$, где $U_{max}-$ максимальное значение напряжения источника питания.

Например, при максимальном напряжении источника 13B и сопротивлении проводов R_{Π} =1 Ом для ограничения тока значением 1A резистор R_{Π} = (11-2)/1-1=8 Ом.

Мощность резистора $P = 13^2/8 = 21$ Вт.

- 6.1.11. Определить оптимальную конфигурацию базы данных. Для этого распределить адресные устройства по виртуальным шлейфам сигнализации (зонам охраны) для группового снятия/постановки на охрану, для управления пожарной автоматикой. Принадлежность АУ к каждому ШС устанавливается программно, физическое размещение АУ в адресной линии может быть произвольным. При срабатывании извещателей информация о событиях в системе будет привязана к номерам или именам ШС, а включение управляющих АУ будет произволиться от извещателей в своем ШС.
- 6.1.12. Для управления устройствами, общими для нескольких ШС, например, для управления вентиляторами дымоудаления, или для вывода сигнала на ПЦН, формируют «группу управления ШС». Для этого при программировании в одну группу управления объединяют несколько пожарных, либо охранных, либо контрольных (инженерных) ШС. В «группе управления ШС» размещают управляющие АУ, которые будут срабатывать при возникновении заданного события в любом из подчиненных ШС.

Задержка срабатывания задается для каждого модуля и отсчитывается от времени события, по которому срабатывает АУ. При этом следует учитывать, что при срабатывании по событию «Пуск» к этому времени добавляется еще время обратного отсчета на экране прибора. В течение обратного отсчета времени может быть произведена отмена срабатывания АУ, настроенных на команду «Пуск».

- 6.1.13. Срабатывание управляющих АУ может быть программно задано по возникновению следующих событий в своем ШС либо подчиненном ШС:
 - срабатывание автоматического пожарного извещателя ("Внимание");
 - срабатывание ручного либо двух автоматических пожарных извещателей ("Пожар");
 - срабатывание по сигналу «Пуск УПА», который формируется по окончанию обратного

отсчета времени;

- срабатывание охранного извещателя ("Тревога");
- срабатывание охранного 24-часового извещателя ("Периметр");
- срабатывание тревожной кнопки ("Тихая тревога");
- срабатывание обычного или 24-часового охранного извещателя либо тревожной кнопки ("Проникновение");
- срабатывание технологического извещателя ("Сообщение 1");
- срабатывание технологического извещателя ("Сообщение 2");
- срабатывание технологического извещателя ("Сообщение 3");
- срабатывание газового извещателя в технологическом ШС ("Порог1");
- срабатывание газового извещателя в технологическом ШС ("Порог2");
- включение автоматического режима работы пожарной автоматики (используется для включения табло "Автоматика включена");
- отмена пожара (включение на 5 сек для сброса линейных дымовых извещателей и т.п.);
- ШС на охране;
- предъявление известного ключа ТМ ("СКУД");
- неисправность: для передачи на ПЦН.

При выборе условий запуска АУ по сигналам «Внимание», «Пожар» или «Пуск» помимо основного применения возможно выбрать одно из дополнительных свойств:

- «звуковое оповещение» при этом во время пожара АУ будет выключаться по команде «Отключение звука»;
- «клапан дымоудаления КДУ» при открытии клапана в одном из ШС открытие клапанов в других ШС блокируется до отмены тревоги.

Свойство «звуковое оповещение» может быть выбрано также по сигналам «Тревога», «Периметр» или «Проникновение».

6.2. Архитектура адресной линии

- 6.2.1. АПКП обслуживает адресные линии, соединенные по лучевой или кольцевой схеме с ответвлениями (см. рис.8,9). Для прокладки адресной линии необходимо использовать кабель UTP-1 или UT 505hг(A)-FRLS FE 180~1x2x0,5mm, UT 505hг(A)-FRHF FE 180~1x2x0,5mm (сечение 0,2мм²) или 1x2x0,8mm (сечение 0,5мм²).
- 6.2.2. Суммарная длина всех участков адресной линии, включая ответвления, в любой конфигурации не должна превышать 3000м, взрывозащищенной адресной линии 2000м.

В то же время напряжение в адресной линии не должно опускаться ниже 3,5В, поэтому при большом количестве АУ допустимая длина адресной линии снижается. При этом линейная часть адресной линии не должна превышать значений, определяемых по рис.10. Под линейной частью древовидной адресной линии понимается ее длина до максимально удаленного АУ. Для кольцевой линии — это кратчайшее расстояние между ее концами, подключенными к клеммам АПКП.

При выполнении требований рис. 9 и 10 любой обрыв адресной линии не приведет к потере связи с устройством, так как его удаление от любой из клемм прибора не превысит допустимого. Следствие: ответвления наибольшей длины для кольцевой архитектуры возможны в точке кольца, максимально удаленной от прибора (критичным является обрыв кольца у клеммы прибора, ближайшей к ответвлению).

6.2.3. Для локализации коротких замыканий в кольцевой адресной линии, а также для подключения ответвлений необходимо использовать размыкатели линии РЛ-2 (рис.11). Размыкатели отключают короткозамкнутые участки линии и автоматически восстанавливают ее целостность при исчезновении короткого замыкания.

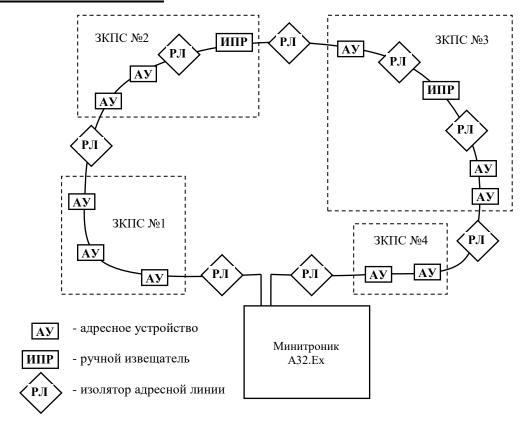


Рис. 8. Архитектура кольцевой адресной линии.

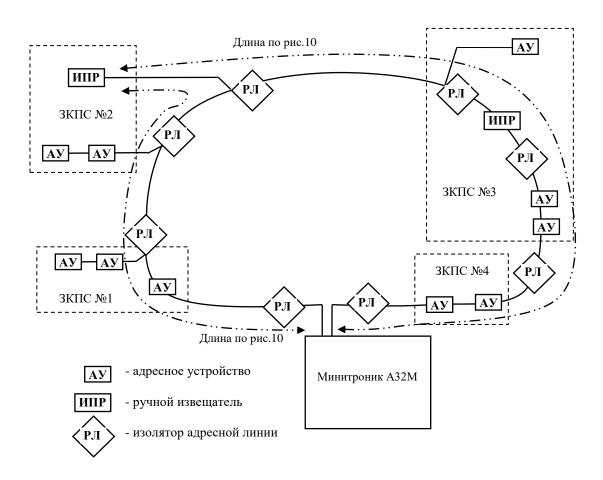


Рис. 9. Архитектура кольцевой адресной линии с ответвлениями.

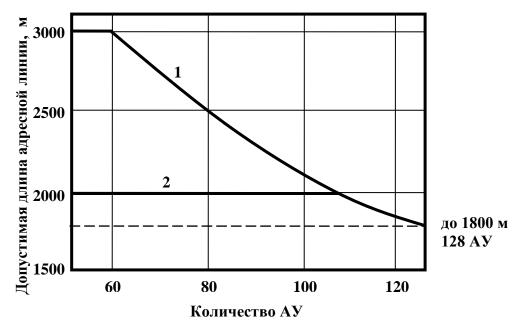


Рис. 10. Допустимая длина линейной части адресной линии в зависимости от количества АУ (допустимая длина определяется как максимальное удаление АУ от любой из клемм прибора): 1 - в обычном исполнении, 2 - взрывозащищенной адресной линии.

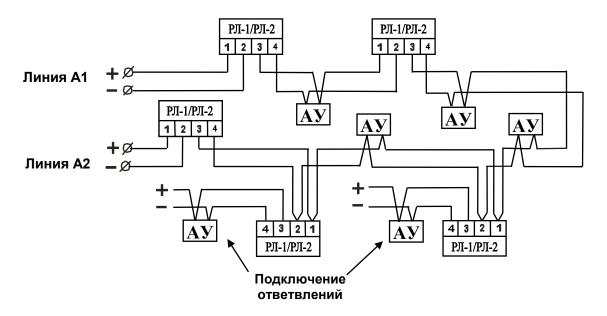


Рис. 11. Защита адресной линии от короткого замыкания с помощью размыкателей линии.

6.3. Шлейфы сигнализации АУ

6.3.1. Неадресные шлейфы сигнализации адресных меток ТК-3 и КТМ допускается прокладывать проводом типа КСПВ 1х0,5. Шлейфы пожарной сигнализации меток ТК, ТК.Ех-С, КТМ следует прокладывать огнестойким кабелем UT 505нг(A)-FRLS FE 180 1х2х0,5mm или UT 505нг(A)-FRHF FE 180 1х2х0,5mm. Длина шлейфа меток ТК, ТК-3 и КТМ — до 300м. Схемы подключения извещателей приведены в руководствах по эксплуатации адресных меток.

7. ПОРЯДОК МОНТАЖА И ПРОГРАММИРОВАНИЯ

7.1. Установка АПКП

7.1.1. Проложить провода согласно проекту, установить АПКП, подключить к его клеммам периферийные устройства (оповещатели, ПЦН и т.п.). Расположение клемм подключения АПКП показано на рис.3.

28 ЮНИТ.437241.400.Ех ТО

7.1.2. Открыть корпус АПКП и включить его: установить аккумуляторную батарею и, соблюдая полярность, подключить к ее клеммам провода системной платы "резервное питание" (красный провод к плюсу), затем включить сетевое питание прибора. При этом включится индикатор зелёного цвета "Дежурный режим".

После этого, на ЖК-дисплее появится приветствие и сообщение «База не сформирована» либо сообщения о неисправностях в подключении периферийных устройств. Устранить неисправности и приступить к формированию базы АУ.

7.1.3. Все АУ в системе имеют электронную адресацию.

Возможны два основных способа монтажа и программирования системы сигнализации.

Согласно первому способу, программирование АУ проводят перед монтажом, подключая их по одному к АПКП. Адреса АУ одновременно наносят (наклеивают) на план объекта и на корпус АУ, а затем монтируют АУ на объекте согласно плану.

Программирование по второму способу выполняется двумя специалистами с применением средств радиосвязи (портативные радиостанции). Перед программированием полностью выполняют монтаж системы сигнализации, а затем программируют АУ, активируя их по очереди путем кратковременного замыкания джампера «Прог.» на выбранном АУ.

В обоих случаях на план объекта наносят адреса будущих АУ, а также составляют таблицу размещения АУ с указанием их адресов и названий помещений.

ВНИМАНИЕ! 1. АПКП во время программирования охранные функции не выполняет. 2. Не допускается подключение адресных выходов АУ к посторонним источникам тока.

7.2. Первый способ программирования АУ

- 7.2.1. Проложить провода согласно проекту, установить АПКП по пп.7.1.1, 7.1.2, установить и подключить базы дымовых извещателей. Ручные извещатели, адресные метки и модули не устанавливать, так как перед подключением следует указать их адреса и установить параметры в памяти АПКП.
- 7.2.2. Для программирования адресов АУ подключить отрезок провода UTP-1 к клеммам «Прогр.» АПКП и перевести прибор в режим программирования (сервисный режим), установив джампер на системной плате. Затем необходимо с помощью указанного провода подключать АУ по одному адресными входами к клеммам «Прогр» и устанавливать адреса и требуемые параметры АУ согласно «Руководству по программированию ЮНИТ.437241.165 РП». На корпуса АУ рекомендуется наклеивать этикетки с адресом АУ. Одновременно наклеивают этикетки на план объекта и таблицу размещения АУ.
 - 7.2.3. По окончании программирования снять джампер на системной плате.
- 7.2.4. Подключить адресную линию к АПКП, сохраняя перемычки между клеммами "A1+" и "A2+", а также "A1-" и "A2-". Запрограммированные АУ установить на свои места согласно проекту и подключать к адресной линии и другим линиям связи, постепенно наращивая длину адресной линии. Схемы подключения АУ приведены в их руководствах по эксплуатации.

После каждого подключения проверять отсутствие сигнала о коротком замыкании на дисплее АПКП. Наиболее часто встречаемая причина короткого замыкания — неправильно выбранная полярность при подключении АУ.

- 7.2.5. При использовании кольцевой адресной линии перемычки между клеммами "A1+" и "A2+", а также "A1-" и "A2-" следует удалить. При использовании лучевой адресной линии перемычки необходимо сохранить во избежание сообщения "Обрыв линии".
- 7.2.6. Добиться появления на дисплее сообщения «Нормальная работа». Для этого, в соответствии с указаниями АПКП, устранить обрывы адресной линии, неисправности в неадресных шлейфах сигнализации, другие неисправности. Там, где это требуется, обеспечить внешнее питание АУ, а также питание исполнительных устройств.

7.3. Второй способ программирования АУ

- 7.3.1. Произвести полностью монтаж системы сигнализации: проложить провода согласно проекту, установить АПКП согласно пп.7.1.1, 7.1.2, установить и подключить адресные пожарные извещатели, адресные метки и модули. К модулям и меткам подключить шлейфы сигнализации с охранными и технологическими извещателями, а также управляемые устройства (клапана дымоудаления, средства оповещения и др.). Крышки корпусов модулей и меток не закрывать.
- 7.3.2. Подключить к АПКП адресную линию с установленными на ней АУ. Рекомендуем адресную линию подключать участками, проверяя после каждого подключения отсутствие сигнала о коротком замыкании на дисплее АПКП. Наиболее часто встречаемая причина короткого замыкания неправильно выбранная полярность при подключении АУ.

При использовании кольцевой адресной линии следует удалить перемычки между клеммами "A1+" и "A2+", а также "A1-" и "A2-". При использовании лучевой адресной линии перемычки необходимо сохранить во избежание сообщения "Обрыв линии".

- 7.3.3. Добиться появления на дисплее сообщения «Нормальная работа» или «База не сформирована». Для этого устранить неисправности в соответствии с указаниями АПКП.
- 7.3.4. Перевести АПКП в режим программирования (сервисный режим). Для этого установить джампер на системной плате и с помощью меню выбрать режим «АУ», затем «Новое».
 - 7.3.5. Активировать одно из АУ:
- 1) Активация меток и модулей производится путем кратковременного замыкания джампера «Прог.» на плате АУ. При этом АУ откликнется одиночным проблеском своего желтого индикатора.

Прим. Контроллер считывателя КТМ имеет дополнительный механизм активации: путем короткого замыкания считывателя ТМ на время более 2 секунд. При активации красный индикатор считывателя выдает одиночный проблеск.

- 2) Активация адресно-аналоговых дымовых, тепловых и газовых (СО) извещателей производится одним из двух способов:
 - при изъятии из базы на время не менее 10 сек с последующей установкой;
 - нажатием кнопки извещателя (от 1 до 3 секунд) сопровождается одиночным проблеском индикатора.
- 3) Активация адресного ручного извещателя производится переводом его в режим «Пожар» нажатием на кнопку извещателя.
- 7.3.6. После активации АПКП предлагает АУ минимальный свободный адрес. При желании можно изменить адрес. Затем установить параметры АУ в соответствии с «Руководством по программированию ЮНИТ.437241.165 РП».

Подтвердить ввод адреса и других параметров АУ нажатием кнопки «ОК». При успешном программировании адреса желтый индикатор на плате АУ дает двойной проблеск. При активации КТМ через считыватель в случае успешного программирования двойной проблеск дает красный индикатор считывателя.

На корпус АУ рекомендуется наклеить этикетку с адресом АУ. Одновременно наклеить этикетку на план объекта и таблицу размещения АУ.

7.3.7. По окончании программирования снять джампер «Прог.» на системной плате АПКП, и он начнет контролировать АУ. Добиться появления на дисплее сообщения «Нормальная работа». Для этого устранить неисправности в неадресных шлейфах сигнализации АУ, другие неисправности в соответствии с указаниями АПКП. Там, где это требуется, обеспечить внешнее питание АУ, а также питание исполнительных устройств.

7.4. Проверка правильности программирования АУ

7.4.1. По окончании программирования рекомендуется провести проверку правильности присвоения адресов АУ и соответствия места установки АУ базе данных.

Для этого, не выходя из дежурного режима работы АПКП, обойти повторно все АУ в том

30 ЮНИТ.437241.400.Ех ТО

же порядке, фиксируя последовательность адресов и активируя АУ по методу п.7.3.5. При активации АУ формируют сигнал ТЕСТ. При этом АУ откликнется одиночным проблеском своего желтого индикатора (считыватель КТМ — проблеском красного индикатора), а на дисплее АПКП появится сообщение об адресе и основных параметрах АУ. Сообщение заносится в журнал событий.

Формирование сигнала ТЕСТ от дымовых и тепловых извещателей производится нажатием тестовой кнопки и сопровождается однократным миганием индикатора извещателя.

- 7.4.2. Сравнить очередность тестирования АУ при их обходе с данными журнала событий. Определить возможные ошибки программирования и устранить их.
- 7.4.3. Для изменения параметров АУ его следует удалить, найдя соответствующую запись в базе АПКП («Сервисный режим», «Работа с АУ», «База»), и затем установить заново согласно пп.7.2.2 или 7.3.4, 7.3.5. Ускоренный поиск АУ для удаления можно осуществить, предварительно отключив АУ от адресной линии, а после появления события «Нет связи» установить джампер сервисного режима и выбрать кнопки «Работа с АУ», «Удалить».

7.5. Применение монтажных устройств и аксессуаров

- 7.5.1. При монтаже АПКП и адресных устройств допускается использование:
 - щиты типа ІЕК ЩМП, ЩПС, ЩКПС и аналогичные;
 - шкафы климатические типа СПЕКТРОН-ТШ, СПЕКТРОН-ТШ-В и аналогичные;
 - шкафы взрывозащищенные типа СПЕКТРОН-ТШ-ЕХВ и аналогичные.
- 7.5.2. Адресные метки и модули могут устанавливаться на DIN-рейки. Допускается установка внутри этажных распределительных устройств типа УЭРМ.
- 7.5.3. Для монтажа извещателей на подвесные и фальш-потолки рекомендуется использовать монтажное устройство УМ-90.

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

8.1. Общие положения

- 8.1.1. АПКП обладает повышенной надежностью и живучестью благодаря резервированию памяти с помощью съемной платы памяти, и автоматическому восстановлению базы данных в случае ее повреждения.
- 8.1.2. АПКП непрерывно следит за состоянием адресной линии и неадресных шлейфов, адресных извещателей, меток и модулей адресации, наличием дополнительного питания, исправностью аккумулятора, наличием допустимого сопротивления утечки в адресной линии (замыкание на землю) и т.п., поэтому техническое обслуживание всех устройств и шлейфов необходимо производить на основании сообщений прибора и в соответствии с их руководствами по эксплуатации.
- 8.1.3. Включение индикатора "АКБ" в мигающем режиме в течение длительного периода времени при наличии сетевого питания прибора свидетельствует о неисправности аккумулятора и необходимости его замены.
- 8.1.4. Регулярно, не реже одного раза в 6 месяцев проверять исправность исполнительных устройств, подключенных к прибору.
- 8.1.5. Вышедший из строя пожарный или охранный извещатель, выдающий сигнал тревоги, необходимо отключать с помощью кнопки «Отключение» на панели АПКП, и впоследствии заменить.

8.2. Замена АУ

- 8.2.1. Для замены АУ на однотипное его следует отключить от адресной линии и установить на его место новое АУ. Замены делать по одному.
- 8.2.2. После появления события «Нет связи» перевести АПКП в режим программирования (сервисный режим). Вызвать режим «Работа с АУ», «Удалить». АПКП представит список АУ,

с которыми отсутствует связь. Выбрать из списка требуемое АУ и нажать кнопку «Заменить». После этого необходимо активировать новое АУ по п.7.3.5. АПКП присваивает новому АУ адрес старого, сохраняя все установки.

Если новое АУ не найдено, или найдено несколько АУ, на экране появится сообщение «Новое АУ не найдено» или «Найдено два АУ», замена производиться не будет.

- 8.2.3. При записи нового адреса в контроллер считывателя КТМ (КПР) его память ключей (карт) автоматически очищается. Если в памяти прибора в заданном ШС содержатся ключи (карты) сотрудника, они автоматически добавляются в память нового контроллера считывателя. Объектовые ключи следует заново записать в память КТМ (КПР).
- 8.2.4. При удалении АУ из охранного ШС, если этот ШС не предполагается в дальнейшем использовать, следует удалить из базы прибора все относящиеся к нему электронные ключи, чтобы увеличить объем памяти для записи новых ключей.

8.3. Замена АПКП

8.3.1. При замене АПКП установить в него плату памяти из старого прибора. После включения питания на вопрос АПКП дать подтверждение переноса в него базы данных из платы памяти.

МИНИТРОНИК АЗ2.Ех

https://www.unitest.ru E-mail: info@unitest.ru